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Emerging technologies make it possible for the first time to
genotype hundreds of thousands of SNPs simultaneously,
enabling whole-genome association studies. Using empirical
genotype data from the International HapMap Project, we
evaluate the extent to which the sets of SNPs contained on
three whole-genome genotyping arrays capture common SNPs
across the genome, and we find that the majority of common
SNPs are well captured by these products either directly or
through linkage disequilibrium. We explore analytical strategies
that use HapMap data to improve power of association studies
conducted with these fixed sets of markers and show that
limited inclusion of specific haplotype tests in association
analysis can increase the fraction of common variants
captured by 25–100%. Finally, we introduce a Bayesian
approach to association analysis by weighting the likelihood
of each statistical test to reflect the number of putative causal
alleles to which it is correlated.

Whole-genome association studies are a comprehensive approach to
testing the hypothesis that common alleles contribute to heritable
phenotype variation1–3. Although neither resequencing every base nor
typing all 11 million currently known polymorphic sites in the human
genome4 is yet technically feasible, a practical path to genome-wide
association studies has been opened by the introduction of genome-
wide SNP arrays5,6 that type 100,000 to 500,000 SNPs per sample.

Such association studies benefit greatly from linkage disequilibrium
(LD)1,2,7, the correlation between the SNPs on each array and other
nearby (untyped) putatively causal alleles8. With the completion of the
Phase II of HapMap9, it becomes possible to address two important
questions with respect to the use of these arrays. First, to what extent
do the fixed set of SNPs on these arrays capture the information about
common variation in the human genome10? Second, is it possible to
devise analytical strategies that make use of HapMap data to increase
the chance of discovering a true association?

We evaluate three whole-genome products: the 100K and 500K
GeneChip Mapping Sets of Affymetrix6, and the Sentrix Human-
Hap300 BeadChip by Illumina5 (products that contain 116,204,
504,152 and 317,503 SNPs, respectively). Figures for the GeneChip
500K and HumanHap300 products are based on lists of SNPs included
on the product (rather than established genotyping performance in
laboratories around the world), and thus should be considered
preliminary, best-case scenarios. Updated information about evalua-
tions of these and subsequent products are available online.

SNPs included on the Affymetrix products have been preselected
primarily on the basis of technical quality and thus represent a quasi-
random set of SNPs. In contrast, SNPs on the Illumina product were
selected using a pairwise correlation-based algorithm applied to
genotype data of HapMap Phase I SNPs in the CEU panel (samples
collected by the Centre d’Etude du Polymorphisme Humain (CEPH)
from Utah residents with European ancestry)11.
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YRI CEU CHB+JPTFigure 1 Fraction of common (MAF Z 5%)

Phase II HapMap SNPs (y-axis) captured by array

SNPs as a function of the r2 cutoff (x-axis). Data

are presented for the GeneChip 100K, GeneChip

500K and HumanHap300 arrays, for each of the

three HapMap analysis panels: Yoruba people

ascertained in Ibadan, Nigeria (YRI); the CEPH

collected samples of European ancestry,

ascertained in Utah (CEU); and Han Chinese

samples from Beijing with Japanese samples

from Tokyo (CHB+JPT).
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Ideally, evaluation of each marker set would involve measuring
the extent to which it is correlated with every putative causal
common allele along the genome. Although complete polymorphism
data do not yet exist to support such an analysis, all three array
SNP sets have been typed in the HapMap reference samples of
270 individuals from four population samples9. These panels therefore
allow, in principle, evaluation of correlation in two data sets:
the ENCODE data of ten regions spanning 5 Mb, with essentially
complete ascertainment for alleles with frequency Z5% (refs. 12,13),
and the genome-wide Phase II HapMap, which includes roughly
3.9 million SNPs successfully typed to date. We therefore
evaluate the GeneChip 100K and 500K arrays vis-à-vis ENCODE
and evaluate all three arrays on the Phase II HapMap data.

A full exploration of the utility of a SNP set
involves estimating the power to detect asso-
ciation under many study design and disease
scenarios14. A simpler, study-independent
measure of utility is the square of the correla-
tion coefficient (r2) between any observed
marker and a putative causal allele15. This
metric is interpretable as the expected drop in
non-centrality of an association test statistic
under specified conditions16, and it has
become one standard for evaluating perfor-
mance of marker sets17–20.
Figure 1 shows the correlation between

common SNPs in the Phase II data (that is,
SNPs with minor allele frequency (MAF) Z

5%) and markers on the whole-genome
arrays (see the Fig. 1 legend for details).
The fraction of SNPs captured is a function

of the threshold correlation coefficient required for tag SNP selection.
For example, in the CEU panel, 45% of all common Phase II SNPs are
captured by the GeneChip 500K array at r2 of 1 (that is, no loss of
power compared with testing the putative causal SNP directly),
whereas 62% of common SNPs are captured at r2 of 0.8 and 80%
with r2

Z 0.5 (that is, highly significant correlations to untyped alleles
but with modest loss of power in association settings). As expected,
SNPs on the array capture a smaller proportion of variants in the most
genetically diverse panel, YRI, than are captured in the CEU and
CHB+JPT panels, in which the fractions of SNPs captured are higher
and similar to one another.
Figure 2 examines correlations of SNPs in the more fully ascer-

tained ENCODE regions for the GeneChip arrays. This cross-validates
the results of common Phase II SNPs and
allows examination of a substantial, yet
incomplete, set of SNPs with frequency 1–
5%. The representation of the latter set of
SNPs is limited and biased by the scope of
SNP discovery efforts, which tend to miss the
rarer alleles. The examined set of SNPs there-
fore demonstrates only an upper bound on
the ability of the arrays to capture low-
frequency alleles, which is much poorer than
corresponding ability for common ones21.
This highlights the focus of the array content
at common variants, where association studies
are most powerful to detect (subtle) genetic
effects22. Comprehensive scans for rare causal
alleles will require other sets of markers, more
involved analysis methods23,24 and, where pos-
sible, complete resequencing.

Even though the majority of common
variants is captured by the current generation
of genome-wide arrays, there is a substantial
component of common variation not highly
correlated to a SNP on each array. We set out
to analytically improve the ability to capture
common variants using only the SNPs on
these arrays and knowledge of LD in available
HapMap data. Here we describe an approach
in which HapMap data is used to detect
correlations between specific combinations
of alleles for SNPs on each array (called
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Figure 2 Fraction of SNPs (y-axis) captured by SNPs on GeneChip 100K and 500K arrays at r2 Z 0.8

in the three HapMap panels: YRI, CEU and CHB+JPT. Data are presented for common SNPs (dark bars)

as observed in HapMap Phase II and ENCODE, and for less common (MAF 1–5%) SNPs (light bars) as

observed in ENCODE. As ENCODE data do not fully represent SNPs from the latter category, but rather

include only a partial set of such SNPs that happened to have been discovered (and tend to be more

common), results presented here should be considered as upper bounds for the ability to capture the
complete set of alleles of frequencies 1–5%.
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Figure 3 Fraction of common SNPs (y-axis) captured by single-array SNPs versus multimarker

predictors in three HapMap panels (YRI, CEU and CHB+JPT). Data are presented for HapMap Phase II

(top) as well as ENCODE (bottom). For Phase II data, we evaluated the GeneChip 100K, GeneChip 500K
and HumanHap300 arrays with two-marker predictors. For ENCODE, we evaluated the GeneChip arrays

with two- or three-marker predictors. As SNP selection for the HumanHap300 product is based on

LD information from Phase I HapMap data (including ENCODE), evaluation using this data set would

be biased upward and therefore is omitted. We report results only for common SNPs in order to

minimize risk of overfitting in the multimarker predictors and thus overestimating the ability to

capture rare alleles.
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multimarker predictors20) and a putatively causal allele previously
uncaptured. We and others17–20,25 have elsewhere introduced this
concept in the context of tag SNP selection, avoiding the typing of
certain SNPs to improve typing efficiency while maintaining study
power. In the context of fixed-content SNP genotyping products, we
propose to use specific multimarker predictors of untyped SNPs
(inferred from the HapMap) as tests of association, thereby increasing
study power without performing additional genotyping.

We observe that multimarker predictors based on combinations
of alleles of two or three SNPs can capture (at r2

Z 0.8) an additional
9–25% of SNPs in ENCODE or HapMap Phase II (Fig. 3). Notably,
using these specific tests (listed online; see Methods), the Human-
Hap300 and GeneChip 500K arrays gain the ability to capture 80–86%
of common alleles in the CEU population with this high level of
correlation. These tests also facilitate pooling association results from
studies that have used different arrays, through combined predictions
of the same SNPs. This gain in power is achieved without additional
genotyping and thus permits more comprehensive association studies
with current products, at no extra cost.

A possible concern is the potential of overfitting based on HapMap
relationships involving limited sample sizes (120 chromosomes for
CEU and YRI; 180 chromosomes for CHB+JPT). Mathematically,
however, the chance of a highly correlated (r2

Z 0.8) common variant
in this sample size is much smaller (o10�12) than the space of
predictors searched for each SNP. We verified this empirically by
developing multimarker predictors to unlinked SNPs: we never
observed spurious correlations of r2 4 0.35 in HapMap data.
Although for rare alleles, overfitting is indeed an issue using the
HapMap sample sizes, we are confident that relationships at thresh-
olds such as r2 4 0.5 involving common SNPs are robust and reliable.

These results suggest that in situations in which direct typing of a
common causal SNP would be successful, use of one of these
genotyping arrays will often provide the opportunity to detect that
association as well, through LD20. However, when any additional
testing (such as the addition of the multimarker tests) is performed,
the benefits of capturing more variation need to be evaluated against
the statistical cost of performing additional hypothesis testing. This is
because addition of statistical tests could, in principle, lead to a
reduction in power by requiring increased statistical significance
thresholds to maintain constant type I error rates (or, conversely,
allowing substantially more false positives if statistical thresholds are
unchanged). This is because addition of statistical tests could, in
principle, lead to a reduction in power by requiring increased
statistical significance thresholds to maintain constant type I error
rates (or, conversely, allowing substantially more false positives if
statistical thresholds are unchanged).

This tradeoff is of particular relevance to multimarker predictors, as
they capture on average fewer untyped SNPs than do single SNPs.
That is, we observe that statistical tests based on the genotype of a SNP
on the array have more proxies on average in HapMap Phase II than
do statistical tests based on two- and three-marker haplotype pre-
dictors (3.85 versus 1.55 putative causal alleles captured, respectively,
on the GeneChip 500K array in the CEU panel). At the extreme,
testing all observed allele combinations26 rather than only the SNPs
and specified multimarker predictors might not pay off, as the marked
increase in degrees of freedom18,25 results in only a tiny increase in the
fraction (3% in CEU) of common SNPs captured9. Adding many tests
while increasing information capture by a small amount can result in a
loss of power for association to common alleles18. Indeed, a recent
detailed simulation study20 shows an increase in power for common
causal variant detection when these specific multimarker tests are

added but a slight reduction in power when all possible haplotypes
are considered.

Next, we consider a Bayesian strategy to tests all alleles without
suffering from an increased burden of multiple testing. The standard,
frequentist strategy for genome-wide association studies8 assigns a
one- or two-degree-of-freedom score to each variant tested and
searches for P-values deemed significant. While P-values speak to
the degree to which observed data is unexpected under the null (that
is, no association) hypothesis, external information may be quite
relevant to the alternative hypothesis (that is, that the tested or a
nearby correlated variant is truly causal). Intuitively, not all tests are
created equal—hypothesis tests that capture the genotypic variance at
many SNP sites, or tests that correspond to known functional
alterations, may rightly be considered more likely a priori to be true
positives than those hypothesis tests that capture only a single variant
site (of unknown functional significance). This highly relevant infor-
mation is not customarily considered a priori in a formal fashion
(although it is often discussed in a post-hoc manner). Analysis of the
HapMap data makes it possible to incorporate such information up
front in association analysis. Specifically, we define prior probabilities
based on the identities and number of putative causal alleles captured
by each allelic hypothesis test. Having assigned to each allele a prior
probability of causality, we can evaluate the a posteriori likelihood of
association given the data (see Methods).

We demonstrate this framework using one objective, simple and
universal hypothesis used in simulation studies20,26: namely, that each
common SNP in the genome is equally likely to be causal. The a priori
likelihood of association to each marker on the array is therefore
proportional to the number of SNPs it captures. The number of
variant sites captured by each hypothesis test is highly variable, as even
very large clusters of correlated SNPs may be represented by a single
SNP, whereas other SNPs capture only themselves. We show by
simulated association studies that incorporation of such prior prob-
abilities (see Methods) modestly but consistently (and statistically
significantly) improves power to detect association as compared with a
frequentist framework. For example, association testing to 100 SNPs,
chosen either randomly or by LD tagging, is improved by 4% by this
approach (Supplementary Fig. 1 online). Moreover, the value of this
approach will only increase as genomic annotation improves the
estimate of the prior probability of each variant site in the genome
being causal. Individual investigators can tailor analysis based on their
own views of how to weight SNPs that are coding27, associated with
variation in gene expression, under a compelling linkage peak28 or in
genes whose function is tied to a particular pathway.

The simultaneous emergence of genome-wide genotyping arrays
and comprehensive, deeply ascertained SNP data from HapMap
provides for the first time a toolkit to evaluate association between
common genetic variation and disease throughout the genome. We
find that current products capture a sizeable portion of genomic
variation, and we describe methods to use the HapMap data for
testing additional non-array SNPs in silico without further genotyping.
Finally, we have developed a framework to prioritize the tested SNPs
based on external information provided by HapMap and, potentially,
additional genomic annotation. Such methods should help enable
systematic and more powerful evaluation of the contribution of
common alleles to complex phenotypes.

METHODS
Data sets. We used the phased ENCODE data from HapMap (release 16c.1).

We also used genotype data from Phase II HapMap, merged these with the

genotype data generated by the GeneChip 500K array, ported the data to
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National Center for Biotechnology Information (NCBI) build 35 (University of

California, Santa Cruz (UCSC) hg17) and subsequently phased the final data

using the expectation-maximization (EM) algorithm29.

Choosing multimarker predictors. For every array product, we have specified a

set of haplotype tests based on HapMap using Tagger20. For every SNP that is

not typed on the array, we aim to find the allelic test (predictor) with the highest

r2 to that SNP, exploiting the knowledge of which SNPs are present on the array.

The predictors are identified by performing an aggressive search among

combinations of two or three SNPs (on the array), evaluating the r2 between

the generated haplotypes and the allele we want to capture. Although many of

the untyped SNPs are captured by high pairwise correlation to a SNP on the

array, a substantial fraction of the (common) SNPs is not. The multimarker

predictors for all three arrays evaluated here can be found on our website.

Simulating case-control panels. Our simulation framework follows a recently

published protocol20. Briefly, the phased ENCODE chromosomes (n ¼ 120

from unrelated individuals in CEU) were resampled to create 1,000 cases and

1,000 controls (4,000 chromosomes in total). For controls, resampling was

uniform. For cases, we designated one SNP to be causal. For this causal SNP, we

calculated an effect size (and corresponding allele frequency in the cases) such

that if it were to be the only SNP tested, power would be 95% to detect it at a

nominal P value of 0.01. In terms of relative risk, the simulated effect size was

therefore larger for rare alleles (Supplementary Fig. 2 online). We created 250

case-control panels for each causal SNP, where we allowed, at random, either

allele of a given SNP to be causal. We repeated this for all common SNPs in a

region and for all ten ENCODE regions separately (a total of nearly 10,000

SNPs). We also generated 250,000 null panels (without a causal SNP) for

evaluation of the null distribution.

Power calculations. Power is defined as the fraction of the simulated case-

control panels in which the test statistic exceeds the significance threshold

(when an association can be declared), averaged over all ten ENCODE regions.

We use the maximum of the 2 � 2 w2 comparison over all allelic tests (single-

marker tests and, optionally, the specified multimarker tests) as the region-wide

test statistic. The significance threshold is derived by performing the same

allelic tests from the null panels (to achieve a region-wide corrected P value of

0.01). The absolute power to detect association at P o 0.01 after multiple

testing correction is 68%, if all common SNPs are evaluated. Power remains

490% of this figure when the best tags (with most proxies) are selected at a

density of one tag per 5 kb, if these tests are given uniform weights20.

Derivation of weights for allelic tests. Suppose the set of m putative causal

alleles is A ¼ {a1, y, am}. Denote by C [ai, I] the count of the allele ai in a set I

of individuals. Let I1, I0 be sets of cases and controls of sizes N1 and N0,

respectively. Define the normalized difference statistic

ZðaiÞ ¼
C½ai ;I1 �
N1

� C½ai ;I0 �
N0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðC½ai; I1�+C½ai; I0�Þ 1 � C½ai ;I1�+C½ai ;I0 �
N1+N0

� �r

Suppose further that the set of n tests (single- or multimarker predictors) used

to capture these alleles is T¼ {t1, y, tn}, and extend the definition of the count

operator [] and the statistic Z to these tests.

The null hypothesis is simple: Z(t1),y, Z(tn) are all standard normal

variables (also known as z-scores). In contrast, the alternative hypothesis

is complex: it states that a causal allele is chosen out of A according to some

prior distribution D: A - [0,1] (where D (ai) denotes the probability of

ai to be chosen as causal), and given that choice, all tests that are correlated

with ac are normally distributed with means greater than zero. More specifi-

cally, let mc be the effect size for the causal allele ac, represented in terms of

mean offset of Z(ac) from the origin. For each test tj, let rc,j denote its

correlation coefficient to ac. Hence, if ac is causal, Z(tj) is normally distributed

with mean mcrc,j.
In this study, we denote the normal probability density function (p.d.f.) and

cumulative density function (c.d.f.) by f and F, respectively. We use the

simulation assumption20 that mc ¼ F(0.95) + F(0.99) E 3.97. We use

Haploview30 to compute the matrix R ¼ rc;j
� �

m�n
of correlation coefficients

between all tests and all alleles and transform it into a matrix W ¼ wi;j

� �
m�n

where wi,j is the probability that, given ai is causal, it will be detected by tj;

that is, the top-scoring test for ai is tj, and it is above the null signal. Formally,

if ri,j ¼ 0, we set wi,j to zero as well. Otherwise, to compute wi,j we integrate

over the real signal, Z(ai), given which we can write the score distributions of

the current test tj and the scores in needs to exceed: the null signal, as well as

any true signal by some other test tj¢ correlated to ai. We approximate such tests

as being dependent through ai only. We can thus express all relevant

probabilities as functions of Z(ai), as follows:

wi;j �
Z1

z¼�1

PðZðtjÞ4nulljZðaiÞ ¼ zÞ

�
Y

j0 jri;j0 6¼0;j6¼j0
PðZðtjÞ4Zðtj 0 ÞjZðaiÞ ¼ zÞ

0
@

1
A� fðz � miÞdz �

¼
Z1

z¼�1

Pnull ri;j � z
� �

�
Y

j 0 jri;j 0 6¼0;j 6¼j 0
F

z rj � rj 0
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � r2

j � r2
j 0

q
0
B@

1
CA

0
B@

1
CA

� fðz � miÞdz

where null represents the region maximum score in a null panel and Pnull(z) is

the empirically derived c.d.f. of this maximum. We can now write the

likelihood ratio test for a data set with the maximum-scoring test tj achieving

an observed score zj:

Pr ZðtjÞ ¼ zjjH1

� �
Pr ZðtjÞ ¼ zjjH0

� � ¼ Xm
i¼1

ðDðaiÞ�wi;jÞ
" #

�P � valueðzjÞ

We thus compute a weight factor Wj ¼
Pm
i¼1

ðDðaiÞ�wi;jÞ for each test tj

employed, and use that to prioritize all P values.

URLs. International HapMap Project ENCODE: http://www.hapmap.org/

downloads/encode1.html.en; whole-genome association products: http://

www.broad.mit.edu/mpg/wga-products; International HapMap Project: http://

www.hapmap.org/; Tagger: http://www.broad.mit.edu/mpg/tagger/; Haploview:

http://www.broad.mit.edu/mpg/haploview/.

Updated information about evaluations of the products described in this

paper are available online http://www.broad.mit.edu/mpg/wga-products; this

site will be updated as new products become available.

Note: Supplementary information is available on the Nature Genetics website.
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